If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18g^2+24g=10
We move all terms to the left:
18g^2+24g-(10)=0
a = 18; b = 24; c = -10;
Δ = b2-4ac
Δ = 242-4·18·(-10)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-36}{2*18}=\frac{-60}{36} =-1+2/3 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+36}{2*18}=\frac{12}{36} =1/3 $
| 4p-3=19 | | 20=12w-7w | | 3x=12,5x= | | 2(x-9)=5x-42 | | -3x^2-15=-4x | | 5(x-2)-7x=-22 | | B=5x+25∘ | | s2=16 | | 4-7a=3-a+12 | | 2x-x+6=-9 | | 5b-13=-13 | | -6x+18=12 | | Y+2)+4=3y | | 3x+2=2x+12+x | | 2x-11=5x+3 | | 25=5v-v | | 8=-8y+2(y+7) | | (x)=4/5 | | 3(u-6)=3 | | 4x48=12x | | 2(2x+5)=182 | | 2x=4(x+20) | | z/7-59=65 | | 2x-3x+x=3 | | 4x48=112 | | 9x+4(-2X+20)=36 | | b-8+6b=31 | | 3x+7=3x+6 | | -79(-2+n)=56 | | 20+17=-6+15y | | a+29=2a–31 | | -5x-12=-2x^2 |